

Carrington-L5: The Next Generation Operational Space Weather Mission

Dr Markos Trichas, Airbus Defence & Space Future Programmes, UK 22 May 2015

Team

Industry:

AIRBUS

DEFENCE & SPACE

Academia:

Imperial College London

Consultation:

Carrington-L5: The Next Generation Operational Space Weather Mission

UK/US Space Weather Impacts

1 total loss

• 10 operational loss

2003: 450 Spacecraft

- 47 outages
- 11 Skynet-4 anomalous events in 48 hours

2015: >1000 spacecraft

- 10% outages
- Rapid ageing
- \$30bn cost

Lloyds, 2010

RAEng, 2013

Metatech Corp, 2008, \$2 trillion

£10 billion

October 2003 (normal day) vertical accuracy <20m

October 2003 (SWE) vertical accuracy >90m

Carrington event: GNSS partial/complete loss for 3-1 days, UK cost ~£1 billion (RAE, 2013)

Space Weather Impact on Other Sectors

- Rail
- Phone/Radio/TV Networks
- Polar Flights (USA)
- Internet/Wireless Communications
- Pipelines
- Oil/Mineral Industries
- Finance
- Military Operations
- Human spaceflight
- Space tourism

(RAE, 2013)

As technology advances, society becomes more vulnerable to SWE events.

UK National Risk Register 2013/2014

National Space Security Policy

URN: UKSA/13/1202

UK Met Office Space Weather Operations Centre (MOSWOC)

Embedded in Met Office Hazard Centre

- 24x7x365 29 April'14
- Full capability autumn October'14
- ~15 trained forecasters

Operational collaboration with NOAA SWPC & BGS

Daily forecast coordination

L5 & L1 Observations: The need for two umpires

From MOSWOC forecast 29/08/2014:

"SOHO LASCO C3 image showing an almost full halo CME. However it looks highly likely that this is from a back sided filament eruption, and so this CME is headed almost directly away from Earth."

Mission Drivers

Instrument	
Coronagraph	Critical for identifying Earth-directed CME
Heliospheric Imager	Critical for identifying Earth-directed CME, and imaging arrival at Earth
Particles/fields	Measurement of CIR approaching Earth.
EUVI	To image solar active centres, in particular to assess the potential for eruptions/flare at sites as the approach locations well connected to Earth
Magnetograph	To image the magnetic structure of the photosphere at sites approaching locations well connected to Earth. Earth-directed events that originate in the field-of-view of the magnetogram, the data can be used to give an indication of the level of geomagnetic activity that will follow. Assess the potential for eruptions/flare.

- MOSWOC/SWPC operational requirements
- Lifetime: 10 years (<2 years transfer)
- 24/7 transfer of data (operational mission)
- UK/US bilateral (high UK/US heritage)
- High TRL platform/components/payloads,
- Low risk/cost
- Development in 6 years from P0 to launch

STEREO-A/SECCHI 2011-06-06 00:00UT Payloads Coronagraph **Airbus DS Boom** Plasma instrument Magnetometer **Radiation Monitor** L5 Active Optical Bench Filter Region GOES13 Proton Flux (5 minute data) Begin: 2012 Mar 7 0000 UTC Time T + 6 days Time T Magnetograph & EUVI No Active Regions Particles Time T + 6 days 10 Mar 9

Heliospheric Imager

Universal Time

Design Trade-Offs

- 1. Direct injection by Falcon-9 to L5
- 2. Stopping manoeuvre at L5
- 3. Spacecraft mass up to 2300 Kg
- 4. Venus Express platform/propulsion
- 5. Sentinel-5P AOCS
- Solar Orbiter avionics
- 7. Mars Express 1.6m antenna
- 8. 100% coverage with 4x15m ground stations
- 9. Daily download: 4.32 Gb (STEREO 5.6Gb)

SOLO OBC/RIU

LGA (from LPF)

S5P STR

VEX Propulsion

- Stable point
- Minimal AOCS requirements
- Continuous transfer of data to Earth
- Persistent monitoring of Sun
- Persistent monitoring of event propagation

Cost & Schedule

- Mission Cost: £200M (UK, USA, Korea, others)
- UKSA:
 - ~£1M (05/2015-05/2016)
 - Cost-benefit analysis and Phase-0
 - Carrington team plus NOAA, SANSA

Year	Schedule
2015	Phase 0 study.UKSA & NOAA/NASA agreementAO for instruments
2016	Instrument selectionPhase A/B starts
2017	Mission selectionPhase B2CDSystem PDR
2018	System CDRInstrument CDRLaunch procurement
2019	S/C build integration & testInstrument delivery
2020	System integration
2021	• Launch

Summary

Questions? markos.trichas@astrium.eads.net

